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Motivations

Introduction : Parallelism & security

• Ever-growing number of threats 
• The market boost of embedded systems
• The increasing variety of operating systems
• Malware detection is a highly common and computationally-intensive 

problem in intrusion detection systems  

             1Real time 
detection

       
             2High throughtput and 
performance

       

             3Need to execute many 
detection algorithms

       



             

    
    
   

       

What about small-scale 
systems?

o How to get benefit from parallel architectures to monitor 
small-scale systems?

• Great use of small-scale systems : mobile phones,  gaming 
consoles, SoC etc.

• Memory and computation performance constraints
• Ever growth of attacks on small-scale systems 
• Improvement in parallel computation performance

Security threats Parallel 
performance 
computation

VS

Introduction : Parallelism & security



             

    
    
   

       

Introduction : Parallelism & security

Previous Work
• Development of parallel architecture for malware 

detection based on pattern matching technique
• Achieving better computing performance  
• Use of Cuda and desktop GPU 

Current Work
• Migration to mobile platform 
• Use of OpenCL
• Building of behavioral malware dataset based on 

syscalls patterns 
• Development of memory optimization techniques 



             

    
    
   

       

Benefits of mobile GPGPU

Parallel Processing architecture

To ensure high security level of mobile devices, 
accelerating malware detection can be provided by 
GPU parallel processing

Offering a complementary processing unit to the CPU

Adapted to SIMD architecture

Fast memory types access (shared memory , constant 
memory)

More and more evolving

GPUs driven by high-end applications: prepared to 
pay a premium for high performance
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Parallel Processing architecture



             

    
    
   

       

Evolution of GPUs for 
embedded systems

Parallel Processing architecture
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Parallel Processing architecture



             

    
    
   

       

Popular mobile GPUs

Parallel Processing architecture
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Parallel Processing architecture

Adreno 330

-Inbuilt in Snapdragon™ 
800 Series Processors. 
-speed can push to 3.6 gig 
pixels/s
-Used in HTC one, Xperia z 
ultra

Power VR SGX544mp3

-Inbuild in Exynos 5 
Octa processor
-used in galaxy s4 
@ 533 MHz clock 
speed

Mali T604

-First time used in Exynos 
5 
-The 1st Midgard 
architecture gpu for arm
-Used in famous series of 
Google tablet nexus 10.



             

    
    
   

       

GPU architecture

Parallel Processing architecture
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Parallel Processing architecture



             

    
    
   

       

Architecture
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Architecture Challenges
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(1) Which type of 
dataset can we use in 

order to have good 
detection accuracy?  

Limitation of Mobile GPU 
memory VS important memory 

requirement of DFA
(3) The need of applying 

memory compacting 
techniques

(2) How can we increase GPU 
processing performance?



             

    
    
   

       

Challenge 1
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Which type of 
dataset can 
we use in 

order to have 
good 

detection 
accuracy? 



             

    
    
   

       
Thread 

1

Thread 
2.1

Thread 
3.1

Thread 
3.2

Thread 
2.2

Thread 
3.4

Thread 
1

Thread 
2.1

Thread 
3.1

Thread 
3.2

Thread 
4.1

Thread 
2.2

Thread 
3.4

Thread 
4.2

Extraction of malicious behavior based on 
syscalls sequences with the thread-grained 
extraction technique

Malware detection 
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• Key concept: Malwares which 
have the same malicious code 
embedded on benign 
applications, will have 
common malicious behaviour

• Tracking the tree architecture 
of applications threads 

• Malicious behaviour is likely 
to appear at the same thread 
level on applications having 
the same malware 

Application 1 Application 2

Thread tree architecture of tow applications belonging
To the same malware family   



             

    
    
   

       

Thread 
1

Thread 
2.1

Thread 
3.1

Thread 
3.2

Thread 
2.2

Thread 
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Thread 
1
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Thread 
3.1

Thread 
3.2

Thread 
4.1

Thread 
2.2

Thread 
3.4

Thread 
4.2

Training phase

Malware detection 
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Recording Phase

• Having different applications that 
belongs to the same malware family

• Execution of every application 
• Tracking thread tree structure of the 

application 
• Recording syscalls sequences for 

every thread created by the 
application

Extraction phase 
• Extraction of common syscalls 

subsequences belonging to threads 
from the same family and having the 
same level 

• Storage of common subsequences 
Applicatio
n 1 

Application 2



             

    
    
   

       

Training phase

Malware detection 

Filtering Phase

• Get syscall patterns from benign applications B

• For every Csi in our malware dataset M

• Counting the number of common subsequence Csi appearing in 
B and in M 

• Calculate malicious probability of Csi 
• Storing Csi into Malware common subsequences if Csi haw high 

malicious probability 
• We choose to work with Csi  having malicious probability = 1 (Csi 

appearing in M and not in B)

                     The result of traning phase= Malware behavioural 
dataset build of syscalls patterns 



             

    
    
   

       

Architecture
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(1) Which type of 
dataset can we use ?  

(2) How can we increase GPU 
processing performance?



             

    
    
   

       

Challenge 2
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How can we 
increase the 

parallell 
processing 

performance 
of pattern 

matching on 
the GPU? 



             

    
    
   

       

Input data

•Signatures
•Syscalls
•Bytecode …

Pattern 
matchi

ng 

Parallel Pattern Matching Algorithm

• Match of data streams by malware scanner against a large set of 
known signatures, using a pattern matching algorithm.

• Pattern matching algorithms analyze the data stream and 
compare it against a database of signatures to detect known 
malware. 

• Fairly complex signature patterns composed of different-size 
strings, range constraints, and sometimes recursive forms.

Example 
• Aho-corasick 
• Wu-manber
• Knuth-Morris-Pratt

Patterns Model

Malicious 
application

Benign 
application
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Parallel Pattern Matching Algorithm



             

    
    
   

       

Aho-Corasick

Parallel Pattern Matching Algorithm

• AC algorithm is based on a DFA 

structure built from reference 

patterns.

• The construction of automaton 

is done in pre-processing 

phase.

• The matching process is done 

in processing phase.  

• The automaton structure can 

be essentially described by tow 

tables: transition table and 

failure state table.

19

Parallel Pattern Matching AlgorithmParallel Pattern Matching Algorithm



             

    
    
   

       

Direct implementation of parallel pattern 
matching 

Parallel Pattern Matching Algorithm

• Idea
 Input stream segmentation
 For every segment we associate a 

thread
 Problem of boundary detection

• Possible solution
 Every thread check the pattern 

presence on the edges.
 Each thread must scan for a 

minimum length which is s almost 
equal to the segment length plus the 
longest pattern length of an AC state 
machine
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Parallel Pattern Matching AlgorithmParallel Pattern Matching Algorithm



             

    
    
   

       

Parallel Failureless 
Aho-Corasick

Lin, C. H., Liu, C. H., Chien, L. S., & Chang, S. C. (2013).
Accelerating pattern matching using a novel 
parallel algorithm on gpus. Computers, IEEE Transactions on, 62(10), 
1906-1916.

Parallel Pattern Matching Algorithm

• Gaols
 Increase pattern matching 

computation throughput via 
parallelization.

 resolve the throughput bottleneck 
caused by the overlapped 
computation.

• Idea
 Byte allocation per thread
 Failure transitions elimination
 The thread stops his work if no 

valid transition is found.
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Parallel Pattern Matching AlgorithmParallel Pattern Matching Algorithm



             

    
    
   

       

 

• No boundary detection problems

 • Shorter worst-case and average life times of 
threads than the straightforward 
implementation

 

• Most of threads have a high probability to end 
their work early

• Access and required memory are reduced 

Parallel Failureless Aho-Corasick

Parallel Pattern Matching Algorithm
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Parallel Pattern Matching AlgorithmParallel Pattern Matching Algorithm



             

    
    
   

       

 

• Reducing the global memory transactions of the 
system

 
• Making benefit from memory architecture of GPU by 

using constant memory and local memory

 

• Minimize transfers: Intermediate data can be allocated, 
operated on, and  deallocated without ever copying 
them to host memory

• Group transfers: One large transfer much better than 
many small ones

Parallel Failureless Aho-Corasick

Parallel Pattern Matching Algorithm

 Increase of the algorithm performance on GPU
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Parallel Pattern Matching AlgorithmParallel Pattern Matching Algorithm



             

    
    
   

       

Challenge 3
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• Malwares grows continuously 

• The number of signatures is increasing 
proportionally

 Scaling problems for mobile anti-malwares 
due to:

• Limitation of Mobile GPU memory VS 
Important memory requirement for DFA 
structureThe need of applying 

memory compacting 
techniques



             

    
    
   

       Eliminating failure transition

Eliminating Final states table by 
performing  state reordering 

Applying P3FSM technique

Memory optimization technique
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1

2

3



             

    
    
   

       

P3FSM: Portable Predictive Pattern Matching Finite 
State Machine

Memory optimization technique
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Parallel Pattern Matching Algorithm
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Hardware

Mobile Phone
• HTC one 

GPU
• Adreno 320

CPU
• Qualcomm Snapdragon 600, quad-core CPU @ 

1.7GHz

Benchmark
• 600 Malicious syscalls patterns 

Parallel Pattern Matching Algorithm
Experimentations 



             

    
    
   

       

Thread per block 
resizing
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Experimentations

 Best throughput with 64x64 threads = 72Mb/s
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Effective use of the different 
GPU memory types
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Experimentations
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 Around 15% gain of 

performance with the use of 
constant and shared 
memories

 Applying shared memory to 
improve the latency of 
global memory accesses



             

    
    
   

       

Acceleration
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Experimentations

 An acceleration of around 2.3x is obtained with the parallel 
processing on the mobile GPU over serial processing

 The framework throughput is dominated by data transfers between 
the host /device which consist of 60% of the total processing time



             

    
    
   

       

Memory 
requirement
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Experimentations

Number of 
patterns

PFAC (KB) P3FSM 
(KB)

100 446 37

200 703 83

300 1086 197

600 2843 462

 Storing DFA structure on the GPU is memory consuming especially that 
mobile GPU memory is small. 

 Difference in memory requirement between PFAC DFA and P3FSM. 
 P3FSM that compacts the DFA structure by many times comparing to 

standard PFAC DFA.
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 Implementation of a parallel host-based anti-malware on 
mobile GPU using behavioral detection techniques

 Series of optimizations to deal with the low memory problem 
of mobile devices and the ever-increasing computing and 
memory requirements of malware detection

 Perspectives: 
 Integrating a GPU monitor which tracks down the GPU 

memory usage and allows the automaton adjustment in 
real-time to fit the reduced GPU memory 

  Use of mobile GPU clusters 
 Working on malware dataset to achieve better detection 

accuracy

Conclusion
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Thank you 
for your 
attention
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