
Manel Abdellatif

introducing

Parallel programming for accelerating
Malware detection

1

Motivations

Introduction : Parallelism & security

• Ever-growing number of threats
• The market boost of embedded systems
• The increasing variety of operating systems
• Malware detection is a highly common and computationally-intensive

problem in intrusion detection systems

 1Real time
detection

 2High throughtput and
performance

 3Need to execute many
detection algorithms

What about small-scale
systems?

o How to get benefit from parallel architectures to monitor
small-scale systems?

• Great use of small-scale systems : mobile phones, gaming
consoles, SoC etc.

• Memory and computation performance constraints
• Ever growth of attacks on small-scale systems
• Improvement in parallel computation performance

Security threats Parallel
performance
computation

VS

Introduction : Parallelism & security

Introduction : Parallelism & security

Previous Work
• Development of parallel architecture for malware

detection based on pattern matching technique
• Achieving better computing performance
• Use of Cuda and desktop GPU

Current Work
• Migration to mobile platform
• Use of OpenCL
• Building of behavioral malware dataset based on

syscalls patterns
• Development of memory optimization techniques

Benefits of mobile GPGPU

Parallel Processing architecture

To ensure high security level of mobile devices,
accelerating malware detection can be provided by
GPU parallel processing

Offering a complementary processing unit to the CPU

Adapted to SIMD architecture

Fast memory types access (shared memory , constant
memory)

More and more evolving

GPUs driven by high-end applications: prepared to
pay a premium for high performance

5

Parallel Processing architecture

Evolution of GPUs for
embedded systems

Parallel Processing architecture

6

Parallel Processing architecture

Popular mobile GPUs

Parallel Processing architecture

7

Parallel Processing architecture

Adreno 330

-Inbuilt in Snapdragon™
800 Series Processors.
-speed can push to 3.6 gig
pixels/s
-Used in HTC one, Xperia z
ultra

Power VR SGX544mp3

-Inbuild in Exynos 5
Octa processor
-used in galaxy s4
@ 533 MHz clock
speed

Mali T604

-First time used in Exynos
5
-The 1st Midgard
architecture gpu for arm
-Used in famous series of
Google tablet nexus 10.

GPU architecture

Parallel Processing architecture

8

Parallel Processing architecture

Architecture

9

Architecture Challenges

10

(1) Which type of
dataset can we use in

order to have good
detection accuracy?

Limitation of Mobile GPU
memory VS important memory

requirement of DFA
(3) The need of applying

memory compacting
techniques

(2) How can we increase GPU
processing performance?

Challenge 1

11

Which type of
dataset can
we use in

order to have
good

detection
accuracy?

Thread

1

Thread
2.1

Thread
3.1

Thread
3.2

Thread
2.2

Thread
3.4

Thread
1

Thread
2.1

Thread
3.1

Thread
3.2

Thread
4.1

Thread
2.2

Thread
3.4

Thread
4.2

Extraction of malicious behavior based on
syscalls sequences with the thread-grained
extraction technique

Malware detection

13

• Key concept: Malwares which
have the same malicious code
embedded on benign
applications, will have
common malicious behaviour

• Tracking the tree architecture
of applications threads

• Malicious behaviour is likely
to appear at the same thread
level on applications having
the same malware

Application 1 Application 2

Thread tree architecture of tow applications belonging
To the same malware family

Thread
1

Thread
2.1

Thread
3.1

Thread
3.2

Thread
2.2

Thread
3.4

Thread
1

Thread
2.1

Thread
3.1

Thread
3.2

Thread
4.1

Thread
2.2

Thread
3.4

Thread
4.2

Training phase

Malware detection

14

Recording Phase

• Having different applications that
belongs to the same malware family

• Execution of every application
• Tracking thread tree structure of the

application
• Recording syscalls sequences for

every thread created by the
application

Extraction phase
• Extraction of common syscalls

subsequences belonging to threads
from the same family and having the
same level

• Storage of common subsequences
Applicatio
n 1

Application 2

Training phase

Malware detection

Filtering Phase

• Get syscall patterns from benign applications B

• For every Csi in our malware dataset M

• Counting the number of common subsequence Csi appearing in
B and in M

• Calculate malicious probability of Csi
• Storing Csi into Malware common subsequences if Csi haw high

malicious probability
• We choose to work with Csi having malicious probability = 1 (Csi

appearing in M and not in B)

 The result of traning phase= Malware behavioural
dataset build of syscalls patterns

Architecture

16

(1) Which type of
dataset can we use ?

(2) How can we increase GPU
processing performance?

Challenge 2

17

How can we
increase the

parallell
processing

performance
of pattern

matching on
the GPU?

Input data

•Signatures
•Syscalls
•Bytecode …

Pattern
matchi

ng

Parallel Pattern Matching Algorithm

• Match of data streams by malware scanner against a large set of
known signatures, using a pattern matching algorithm.

• Pattern matching algorithms analyze the data stream and
compare it against a database of signatures to detect known
malware.

• Fairly complex signature patterns composed of different-size
strings, range constraints, and sometimes recursive forms.

Example
• Aho-corasick
• Wu-manber
• Knuth-Morris-Pratt

Patterns Model

Malicious
application

Benign
application

18

Parallel Pattern Matching Algorithm

Aho-Corasick

Parallel Pattern Matching Algorithm

• AC algorithm is based on a DFA

structure built from reference

patterns.

• The construction of automaton

is done in pre-processing

phase.

• The matching process is done

in processing phase.

• The automaton structure can

be essentially described by tow

tables: transition table and

failure state table.

19

Parallel Pattern Matching AlgorithmParallel Pattern Matching Algorithm

Direct implementation of parallel pattern
matching

Parallel Pattern Matching Algorithm

• Idea
 Input stream segmentation
 For every segment we associate a

thread
 Problem of boundary detection

• Possible solution
 Every thread check the pattern

presence on the edges.
 Each thread must scan for a

minimum length which is s almost
equal to the segment length plus the
longest pattern length of an AC state
machine

20

Parallel Pattern Matching AlgorithmParallel Pattern Matching Algorithm

Parallel Failureless
Aho-Corasick

Lin, C. H., Liu, C. H., Chien, L. S., & Chang, S. C. (2013).
Accelerating pattern matching using a novel
parallel algorithm on gpus. Computers, IEEE Transactions on, 62(10),
1906-1916.

Parallel Pattern Matching Algorithm

• Gaols
 Increase pattern matching

computation throughput via
parallelization.

 resolve the throughput bottleneck
caused by the overlapped
computation.

• Idea
 Byte allocation per thread
 Failure transitions elimination
 The thread stops his work if no

valid transition is found.

21

Parallel Pattern Matching AlgorithmParallel Pattern Matching Algorithm

• No boundary detection problems

 • Shorter worst-case and average life times of
threads than the straightforward
implementation

• Most of threads have a high probability to end
their work early

• Access and required memory are reduced

Parallel Failureless Aho-Corasick

Parallel Pattern Matching Algorithm

22

Parallel Pattern Matching AlgorithmParallel Pattern Matching Algorithm

• Reducing the global memory transactions of the
system

• Making benefit from memory architecture of GPU by

using constant memory and local memory

• Minimize transfers: Intermediate data can be allocated,
operated on, and deallocated without ever copying
them to host memory

• Group transfers: One large transfer much better than
many small ones

Parallel Failureless Aho-Corasick

Parallel Pattern Matching Algorithm

 Increase of the algorithm performance on GPU

23

Parallel Pattern Matching AlgorithmParallel Pattern Matching Algorithm

Challenge 3

24

• Malwares grows continuously

• The number of signatures is increasing
proportionally

 Scaling problems for mobile anti-malwares
due to:

• Limitation of Mobile GPU memory VS
Important memory requirement for DFA
structureThe need of applying

memory compacting
techniques

 Eliminating failure transition

Eliminating Final states table by
performing state reordering

Applying P3FSM technique

Memory optimization technique

25

1

2

3

P3FSM: Portable Predictive Pattern Matching Finite
State Machine

Memory optimization technique

26

Parallel Pattern Matching Algorithm

27

Hardware

Mobile Phone
• HTC one

GPU
• Adreno 320

CPU
• Qualcomm Snapdragon 600, quad-core CPU @

1.7GHz

Benchmark
• 600 Malicious syscalls patterns

Parallel Pattern Matching Algorithm
Experimentations

Thread per block
resizing

28

Experimentations

 Best throughput with 64x64 threads = 72Mb/s

1
6

3
2

6
4

1
2

4

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

Local work-group resizing

Work-group size

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

Effective use of the different
GPU memory types

29

Experimentations

O
n

ly
 g

lo
b

a
l m

e
m

o
ry

co
n

sta
n
t m

e
m

o
ry

+
 sh

a
re

d
 m

e
m

o
ry

5
4

5
6

5
8

6
0

6
2

6
4

6
6

6
8

7
0

7
2

7
4

Different mobile GPU memory use

T
h

ro
u

g
h

p
u

t
 Around 15% gain of

performance with the use of
constant and shared
memories

 Applying shared memory to
improve the latency of
global memory accesses

Acceleration

30

Experimentations

 An acceleration of around 2.3x is obtained with the parallel
processing on the mobile GPU over serial processing

 The framework throughput is dominated by data transfers between
the host /device which consist of 60% of the total processing time

Memory
requirement

31

Experimentations

Number of
patterns

PFAC (KB) P3FSM
(KB)

100 446 37

200 703 83

300 1086 197

600 2843 462

 Storing DFA structure on the GPU is memory consuming especially that
mobile GPU memory is small.

 Difference in memory requirement between PFAC DFA and P3FSM.
 P3FSM that compacts the DFA structure by many times comparing to

standard PFAC DFA.

32

 Implementation of a parallel host-based anti-malware on
mobile GPU using behavioral detection techniques

 Series of optimizations to deal with the low memory problem
of mobile devices and the ever-increasing computing and
memory requirements of malware detection

 Perspectives:
 Integrating a GPU monitor which tracks down the GPU

memory usage and allows the automaton adjustment in
real-time to fit the reduced GPU memory

 Use of mobile GPU clusters
 Working on malware dataset to achieve better detection

accuracy

Conclusion

33

Thank you
for your
attention

	Slide 1
	Motivations
	What about small-scale systems?
	Slide 4
	Benefits of mobile GPGPU
	Evolution of GPUs for embedded systems
	Popular mobile GPUs
	GPU architecture
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Training phase
	Training phase
	Slide 16
	Slide 17
	Slide 18
	Aho-Corasick
	Direct implementation of parallel pattern matching
	Slide 21
	Parallel Failureless Aho-Corasick
	Parallel Failureless Aho-Corasick
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Thread per block resizing
	Effective use of the different GPU memory types
	Acceleration
	Memory requirement
	Slide 32
	Slide 33

