Manel Abdellatif

introducing

Parallel programming for accelerating
Malware detection

."- ‘

@ ot
"__

e __rrfr’!—;ff_-—”rf”
e

B e -5 ——— -

oy
—_

—

— Lt J
ST T F 5SS E5SS ‘!-":S

e — e

Introduction : Parallelism & security

Motivations

* Ever-growing number of threats

* The market boost of embedded systems

* The increasing variety of operating systems

* Malware detection is a highly common and computationally-intensive
problem in intrusion detection systems

High throughtput and
performance

Introduction : Parallelism & security

V¥iicdl dDOULU SiTiadli=-sCdic

?
S°yGrSe;¥ Use of smail-scale systems : mobile phones, gaming
consoles, SoC etc.
 Memory and computation performance constraints
* Ever growth of attacks on small-scale systems
* Improvement in p rallel computation performance

A o A
Security threats Parallel

performance
computation

o How to get benefit from parallel architectures to monitor
small-scale systems?

Introduction : Parallelism & security

Previous Work

* Development of parallel architecture for malware
detection based on pattern matching technique

* Achieving better computing performance

* Use of Cuda and desktop GPU

Current Work

Migration to mobile platform

Use of OpenCL

Building of behavioral malware dataset based on
syscalls patterns

Development of memory optimization techniques

Parallel Processing architecture

Benefits of mobile GPGPU

v'To ensure high security level of mobile devices,
accelerating malware detection can be provided by
GPU parallel processing

v Offering a complementary processing unit to the CPU

v Adapted to SIMD architecture

v Fast memory types access (shared memory , constant
memory)

v"More and more evolving

v CDIlle Avrivianm izs hinhh ArnA s li~a+F i Anec: AranmAarad FA

Parallel Processing architecture

Evolution of GPUs for
membedded svstems

40% more GFLOPS/ quarter

350

300 -

250

200

150

100 |

30 1

0

Adreno 320

Mali T604

v

PowerVR 5XT

Sep-2011 Dec-2011 Apr-2012 Jul-2012 Oct-2012 Jan-2013

© 2011 Aptina Imaging Corporation

Adreno 330

May-2013

Mali 7628

Aug-2013 Nov-2013

Mar-2014

_/Esnmated at \

performance.

F

| less in practice.
L

—

% GFLOPS
= Trend

.Iunvimo ADUHG

sustained peak '\.

Likely to be much ~ /

Parallel Processing architecture

Popular mobile GPUs

Adreno 330 Power VR SGX544mp3 Mali T604

ARM? Mali™-T604

. Inter-Caore Task Management

Shader Shader Shadar
Care Core

ﬁ HMemaory Management Unit

£i: snapdragon i

[Level 2 Cacha/SCU

[Tl AMBA™4 ACE-Lite

-Inbuilt in Snapdragon™ -Inbuild in Exynos 5 -First time used in Exynos
800 Series Processors. Octa processor 5

-speed can push to 3.6 gig -usedin galaxy s4 -The 1st Midgard

pixels/s @ 533 MHz clock architecture gpu for arm
-Used in HTC one, Xperia z speed -Used in famous series of

ultra Google tablet nexus 10.

Parallel Processing architecture

GPU architecture

Constant
Global Memory Memory
I
Local Memory
= = = =
= = = =
Kernel ol il ol il =
] D D D (]
3 = = 3 =
«w
=2 32 3% 5T 9
2 23& 328 338 ©
= = = 2 @

Architecture

Processing
CPU GPU
I
__| i Parallel Pattern Matching
-"/_[“‘;) List of application traces oFﬂoadlng
N traces

Applicati
ffcg exe?St:'coE:'\ It?:ées r‘ H H H IT check to GPU Trace buffer
applications traces
Checking
< results

GPU threads

Monitoring

DFA structure

=

Malwares signatures

Preprocessing

Architecture Challenges

Processing

cPU

Applications
CCCC exacution traces

applications traces

List of application traces

H H H h

GPU

Parallel Pattern Matching

offloading
traces

Trace buffer

check to GPU

<<

Monitoring

/\

0P

GPU threads

Malwares signatures

| ‘ DFA structure
/ a
-

(1) Which type of

dataset can we use in Preprocessing

order to have good
detection accuracy?

(2) How can we increase GPU
processing performance?

Limitation of Mobile GPU

memory VS important memory

requirement of DFA
(3) The need of applying
memory compacting
techniques

10

Challenge 1

Which type of
dataset can
we use in
order to have
good
detection
accuracy?

11

Malware detection

pehavior based on
syscalls sequences with the thread-grained
extraction technique

* Key concept: Malwares which
have the same malicious code
embedded on benign
applications, will have
common malicious behaviour

* Tracking the tree architecture
of applications threads

* Malicious behaviour is likely
to appear at the same thread
level on applications having
the same malware

Thread tree architecture of tow applications belc

To the same malware family
13

Malware detection

Training phase

“*Recording Phase

* Having different applications that el e l
belongs to the same malware family ! |

« Execution of every application | |

* Tracking thread tree structure of the
application

* Recording syscalls sequences for
every thread created by the
application

< Extraction phase

« Extraction of common syscalls
subsequences belonging to threads
from the same family and having the

same level N N
Applicatio Application 2
« Storage of common subsequences n1 14

Malware detection

Training phase

“Filtering Phase
* Get syscall patterns from benign applications B
* For every Csi in our malware dataset M

* Counting the number of common subsequence Csi appearing in
Bandin M
* Calculate malicious probability of Csi
* Storing Csi into Malware common subsequences if Csi haw high
malicious probability
* We choose to work with Csi having malicious probability = 1 (Csi

aﬁﬁiaring iIn M and not in B)

The result of traning phase= Malware behavioural
Aatacat hiiild nf cvvecalle NnAatternc

Architecture

Processing

CPU GPU
I
i Parallel Pattern Matching
"'/_l:’ List of application traces offloading
traces
Applicat Ti b uffi
CCCC exe?St:'coE:'\ It?:ées r‘ H H H IT check to GPU race bufter
applications traces
< Checking
results
Monitoring /\ GPU threads

(2) How can we increase GPU
DFA structure processing performance?

Malwares signatures

(1) Which type of
dataset can we use ? Preprocessing

v

16

Challenge 2

How can we
iIncrease the
parallell
processing
performance
of pattern
matching on

the GPU? -

Parallel Pattern Matching Algorithm

* Match of data streams by malware scanner against a large set of
known signatures, using a pattern matching algorithm.

* Pattern matching algorithms analyze the data stream and
compare it against a database of signatures to detect known
malware.

* Fairly complex signature patterns composed of different-size
strings, range constraints, and sometimes recursive forms.

Patterns Model

Ny

Example Malicious Benign
* Aho-corasick applicationapplication
« Wu-manber

* Knuth-Morris-Pratt

Parallel Pattern Matching Algorithm

Aho-Corasick

AC algorithm is based on a DFA
structure built from reference

patterns.

The construction of automaton
Is done in pre-processing
phase.

The matching process is done

in processing phase.

The automaton structure can
be essentially described by tow

tables: transition table and

£~ "5 1 L - 5L oL

ltr[tl msgeet | recy close |
m[tl read recy open |
| ey rieadd reey | getclock |
Ty msgEet s close
A 3 = 4
igetl \‘_‘_-,-,I':..ld gt
Y Ly T e
A eI laeRrt b
- . - - - A |
T Fyoay peCIl
tart —{ 0 j . .
R T Febel T o .
AN
N - s r
T WP aemed
ki .I 'H' I lr rocy #“.L-il'h@
state | Final state reArt. | ey
0| b] G | @ Rl)badl]G]
0 U 1| bl |
1 0 r | Gl |t 1
1 | Gl | Gl |
) 0l :
Eail Lail L
J L Eall fa
fall | il
1
| il | sl
i1 0 il il | Lad | fail ad
@ || Eail =il LT
10| fail T
i 1
] L
1 0l
10 T
11 L

state |Fzilurs state

LI} i
1 0
2 1
3 8
1 0
0

5 B
7 0
] i
9 L
10 8
11 0

Parallel Pattern Matching Algorithm

Direct implementation of parallel pattern
matching

o d AAAAAAAAAAAAAAAAAAAAAAAB 1 thread
ldea > 24 cycles

. {a): Single thread approach
Input stream segmentation

For every segment we associate a
thread

> Problem of boundary detection

A\

IAAAAAAAAAAANAAAAAAAAAAAB 4 threads
- > > > 6 cycles

A\

(b): Multiple threads approach

Figure 1. Single vs. multiple thread approach

AAAAAAARAAAAAAAAAAAAAAAAB BBBBBEB

L - o -
Thread 1 Thread 2 Thread 3 Thread 4

Figure 2. Boundary detection problem that the pattern “AB" cannot be
identified by Thread 3 and 4.

* Possible solution
> Every thread check the pattern

presence on the edges. . , Thread 3 can identify “AB"
> Each thread must scan for a ke’ oS i v

minimum length which is s almost : =L, |

equal to the segment length plus the T TR THEE Treald |

longest pattern length of an AC state \

Figure 3. Every thread scans across the boundary to resolve the boundary

maChlne detection problem.

Parallel Pattern Matching Algorithm

§E ARl VSAERESWwE

Aho-Corasick

§I VAN IEE W il Wb

Lin, C. H., Liu, C. H., Chien, L. S., & Chang, S. C. (2013).
Accelerating pattern matching using a novel

parallel algorithm on gpus. Computers, IEEE Transactions on, 62(1
1906-1916.

* Gaols

> Increase pattern matching
computation throughput via
parallelization.

> resolve the throughput bottleneck
caused by the overlapped

computation.
* Idea
> Byte allocation per thread
> Failure transitions elimination
» The thread stops his work if no

valid transition is found.

In

l

£ U

R

T msgget o7

{1 2

i.y

start = 0

u*{\
T 8
.

state | Final state

L1} L
1 0
2 0
3 i
I 1
s 0
[L

i
9 0
10 L
11 1

l

oet] msgEet reev close peev read reev petelock

I

Vi

N

n'.‘n]'\.\. -

o O
O>=0

read 7 ooy o Eetclock
N iy Jf 1 ¥ .
g mr ald wety | et bak lstate FEiIUrE ctate
| fail il I |k]
1| kil 2 i ui il 0
= [fail 1 i ¥ 1 0
Lail Ll i agl
Ll | Ll ail sl 2 L
Ball | fall I i 3 5
Ball | tail il
Bl | fail ail » I i
il | Gl i ,
Eail | =il il 2 i
G 5
| il il 1
0
b 0
1] 8
11 0

Parallel Pattern Matching Algorithm

Parallel Failureless Aho-Corasick

Parallel Pattern Matching Algorithm

Parallel Failureless Aho-Corasick

> Increase of the algorithm performance on GPU

Challenge 3

* Malwares grows continuously

* The number of signatures is increasing
proportionally

» Scaling problems for mobile anti-malwares
due to:

* Limitation of Mobile GPU memory VS

ImportanilrmxgmmﬁfrepcrrrewwentﬁfDFA
| he nheed of applying

structure i
memory compacting
techniques

24

Memory optimization technique

25

Memory optimization technique

ortable ictive Pattern Matching Finite
State Machlne
Code Table
Index Code State
P gy 1 100101 1
TN > [@ [ioreoi [
I .Y) 3 001000 2
O@IVAY Y =
OO0 4 |0 o | 7
N I fﬁ_ﬂ_:g /

Character/Cluster Table
Char | Signature | Cluster | Offset | Index
H | 00 [/NI 1

S 01 1 2 3

(a) DFA for Patterns “SHE"”, “HERS", “HIS”

1. Check clustern f state code 7 for character signature of I-E?a 1"_2‘]

2. Compute next state: state signature + character offset
+© = 2 -> next state index ={2), next state = state@

L9V

Experimentations

“*Hardware

dMobile Phone
 HTC one

JdGPU
 Adreno 320

JCPU
* Qualcomm Snapdragon 600, quad-core CPU @
1.7GHz

“*Benchmark
* 600 Malicious syscalls patterns

Experimentations

H HEE N O Vi PUI N Rl W BN

|| ||
resizing
Local work-group resizing
)
@ ° .
2 3
s
-} o
o o
_: o
o o
: o
o =
N =
F o

ol

w)]
~N B

yll

Work-group size

v' Best throughput with 64x64 threads = 72Mb/s

Experimentations

Effective use of the different
GPU memory types

dDifferent mobile GPU memory use

v Around 15% gain of
performance with the use of
constant and shared
memories

v Applying shared memory to
improve the latency of
global memory accesses

¥S oG g5 09 79 %9 09 g9 oL 7L wL

‘hroughput

Experimentations

Acceleration

Acceleration

Throughput {MEB/s)

80

70

50

50

40

30

20

10

o -

1 Sequential Processing

2z Parallel Processing

v An acceleration of around 2.3x is obtained with the parallel
processing on the mobile GPU over serial processing

» The framework throughput is dominated by data transfers between
the host /device which consist of 60% of the total processing time

Experimentations

H T BE RN R ,

requirement

Number of PFAC (KB)
patterns
446 37

1086 197

v' Storing DFA structure on the GPU is memory consuming especially that
mobile GPU memory is small.

v' Difference in memory requirement between PFAC DFA and P3FSM.

v P3FSM that compacts the DFA structure by many times comparing to
standard PFAC DFA.

Conclusion

" Implementation of a parallel host-based anti-malware on
mobile GPU using behavioral detection techniques

" Series of optimizations to deal with the low memory problem
of mobile devices and the ever-increasing computing and
memory requirements of malware detection

" Perspectives:

> Integrating a GPU monitor which tracks down the GPU
memory usage and allows the automaton adjustment in
real-time to fit the reduced GPU memory

» Use of mobile GPU clusters

» Working on malware dataset to achieve better detection
accuracy

Thank you
for your
attention

	Slide 1
	Motivations
	What about small-scale systems?
	Slide 4
	Benefits of mobile GPGPU
	Evolution of GPUs for embedded systems
	Popular mobile GPUs
	GPU architecture
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Training phase
	Training phase
	Slide 16
	Slide 17
	Slide 18
	Aho-Corasick
	Direct implementation of parallel pattern matching
	Slide 21
	Parallel Failureless Aho-Corasick
	Parallel Failureless Aho-Corasick
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Thread per block resizing
	Effective use of the different GPU memory types
	Acceleration
	Memory requirement
	Slide 32
	Slide 33

